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Introduction

When one meets the paradoxes of self-reference for the first time, one is struck
by the fact that they all appear to be members of a single family, generated by a
common underlying principle. Indeed, Russell, who inaugurated the study of
these paradoxes this century, held that this is precisely what they are. It is notori-
ously difficult to pin down the common underlying principle, however. For exam-
ple, on closer scrutiny it is not at all clear what the Burali-Forti and Liar
Paradoxes have in common. Russell himself was unable to say what held the fam-
ily of paradoxes together beyond some rather unsatisfactory remarks concerning
vicious circles in Principia Mathematica. (See for example Godel 1944.)

It is therefore unsurprising that the modern view of the paradoxes is to the
effect that there are two distinct families here, which arise from different sources,
and which are to be treated quite differently. (The view is now so orthodox that
this claim needs no documentation.) Although one can find something like this
view expressed in Peano (1906), the founder of the orthodoxy was Ramsey
(1925).

The only point of this paper is to demonstrate that Russell was right and Ram-
sey was wrong. The paradoxes of self-reference do have a common underlying
structure, which generates the contradiction involved, and I shall spell out exactly
what that is. Moreover, as we shall see, Russell had been on the right track some

five years earlier.

1. Ramsey’s division

Though Ramsey’s division of the family into two classes is wrong, it will be use-
ful to have it before us. His exact words are not without historical interest, so let

me simply quote him:

It is not sufficiently remarked, and the fact is entirely neglected in Prin-
cipia Mathematica, that these contradictions [the paradoxes of self-ref-
erence] fall into two fundamental distinct groups, which we will call A
and B. The best known are divided as follows:

A. (1) The class of all classes which are not members of themselves.
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(2) The relation between two relations when one does not have it-
self to the other.

(3) Burali Forti’s contradiction of the greatest ordinal.

B. (4)“Iam lying.”
(5) The least integer not nameable in fewer than nineteen syllables.
(6) The least indefinable ordinal.
(7) Richards’s contradiction.
(8) Weyl!’s contradiction about “heterologische”.
The principle according to which I have divided them is of fundamental
importance. Group A consists of contradictions which, were no provi-
sion made against them, would occur in a logical or mathematical sys-
tem itself. They involve only logical or mathematical terms such as
class and number, and show that there must be something wrong with
our logic or mathematics. But the contradictions in Group B are not
purely logical, and cannot be stated in logical terms alone; for they all
contain some reference to thought, language, or symbolism, which are
not formal but empirical terms. So they may be due not to faulty logic
or mathematics, but to faulty ideas concerning thought and language. If
s0, they would not be relevant to mathematical logic, if by “logic” we
mean a symbolic system, though of course they would be relevant to
logic in the sense of the analysis to thought. [Footnote: these two mean-
ings of “logic” are frequently confused...]J(1925, p. 171 of reprint)
In hindsight, the unsatisfactory nature of Ramsey’s criterion is clear. For a start,
if one wants to draw a fundamental distinction, this ought to be done in terms of
the structure of the different paradoxes. Ramsey’s distinction depends on the rel-
atively superficial fact of what vocabulary is used in the paradoxes, and, in par-
ticular, whether this belongs to mathematics properly so called. But worse, this is
a notoriously shifting boundary. Ramsey was, of course, writing before the hey-
day of meta-mathematics. Had he been writing ten years later, it would have been
clear that a number of items of vocabulary occurring in paradoxes of Group B do
belong to mathematics. In particular, both syntactical and semantical linguistic
notions became quite integral parts of mathematics. Indeed, in a sense, the work
of Godel and Tarski showed how these notions could be reduced to other parts of
mathematics (number theory and set theory, respectively).

Despite this, it behoves anyone who says that Ramsey is wrong to come good
with the structure underlying paradoxes of self-reference. This we will turn to in
a moment. But first it will also be convenient to divide Ramsey’s Group B itself
into two. In the first class, Bi, belong Ramsey’s (5), (6) and (7); in the second, Bii,
belong, (4) and (8). A rough criterion for the distinction is that paradoxes in Bi,
but not Bii, make explicit use of the notion of definability. More fundamentally,
paradoxes in Bii use diagonalisation, or some similar mechanism, to establish
something of the form a <> —~a, and hence a. and —a; whereas paradoxes in Bi
give independent arguments for each of o and —c.
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2. Russell’s Schema

To exhibit the structure underlying all these paradoxes, let us start with what I
shall call Russell’s Schema, an idea dating from some years before he lighted
upon the Vicious Circle Principle. In his own words this is as follows:
Given a property @ and a function 6, such that, if ¢ beIongs to all mem-
bers of u, 8(u) always exists, has the property @, and is not a member of
u; then the supposition that there is a class w of all terms having property
@ and that 6(w) exists leads to the conclusion that &(x) both has and has
not the property @. (1905, p. 142 of reprint)
Less tersely, given a property @, and function 8, consider the following condi-
tions:
1) w={x: g(x)} exists
2) if x is a subset of w: a) d(x)&x
and b) d(x)ew
For future reference I will call clause (2a) the Transcendence Condition and

clause (2b) the Closure Condition.
Given (1) and (2) we have a contradiction. For when Transcendence and Clo-

sure are applied to w, an irresistible force meets an immovable object. The result:

8(w)ew and &(w)ew. Hence, any @ and 6 that instantiate Russell’s Schema gener-
ate a contradiction. Russell did not claim that this structure was behind all the par-
adoxes. He did, however, demonstrate that it was behind all paradoxes of
Ramsey’s Group A. To see how, it is sufficient to examine a couple of examples.

In Russell’s Paradox, the property @(x) is “x¢x”, so that w is the Russell set
R={y; y¢y}; and the function & is simply the identity function, id. Suppose that
xCw; then x ex—>x¢x. Hence x¢x, demonstrating Transcendence; it follows that x
e R, which is Closure. The contradiction is that ReR and R¢R.

Russell’s Paradox is a stripped-down version of Cantor’s Paradox (see Russell,
1905), so let us move on to Burali-Forti’s. ¢(x) is “x is an ordinal”, and so w is
the set of all ordinals, On; &) is the least ordinal greater than every member of
x (abbreviation: log(x)). Transcendence holds by definition, as does Closure. The
contradiction is that log(On)eOn and log(On)¢On.

One further example: Mirimanoff’s Paradox. In this, @(x) is “x is well
founded”, so that w is the cumulative hierarchy, V; &(x) is just the power set of x,
P(x). If xCV, Transcendence and Closure hold simply in virtue of x being well-
founded. The contradiction in this case is that VEV and VeV, since &(V) is just V
itself. (Since all members of V are well-founded P(V)CV. But if xV then every
member of x is in V. Hence VCP(V).)
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We can tabulate these observations as follows:

Paradox &(x) P(x) w
Russell id(x) XEX R
Burali-Forti log(x) x is an ordinal On
Mirimanoff P(x) x is well-founded VvV

3. Definability paradoxes

Let us now move on to the paradoxes in Ramsey’s Group Bi, the definability par-
adoxes, and recall that something is definable iff there is a (non-indexical) noun-
phrase that refers to it. Now consider Konig’s Paradox as an example: there are
indefinable ordinals, and the least indefinable ordinal has just been defined in that
very phrase. At first glance, this would appear to fit into Russell’s Schema very
nicely. @(x) is the predicate “x is a definable ordinal”, so that w is the set of defin-
able ordinals, DOn; and 8(x) is lon(x) (the least ordinal not in x). The contradic-
tion is that the least indefinable ordinal lon(DOn) both is and is not definable (that
is, a member of DOn).

Unfortunately, things are not so simple. For whilst Transcendence is true,
lon(x)¢x, Closure need not be: even if every member of x is definable, there is no
reason to suppose that x itself is definable. And if it is not, there is no reason to
suppose that the least ordinal not in x is definable, i.e., that lon(x )e DOn.

If, however, x is definable, then we do have that lon(x)eDOn; and this suggests
a small modification of Russell’s conditions, as follows: For given properties ¢
and 1, and (possibly partial) function d:

1) w={x: @x)} exists and Y(w)
2) if x is a subset of w such that y(x):
a) &(x) ¢x
and b) dx)ew
If these conditions are satisfied we still have a contradiction. For since y(w), we
have both &(w)ew and (w)ew. I will call this the Qualified Russell’s Schema. The
essential qualification is that applying & to an arbitrary subset of w is not now
guaranteed to transcend it; only if the set satisfies ¥ will it do so. Thus & works
on a sub-family of the power set of w, P(w).

Bearing this in mind, it is clear that Russell’s Schema proper is just a special
case of the Qualified Russell Schema, where the sub-family in question is P(w)
itself (i.e., where 1 is the universal property, Axx=x). Thus, the Qualified Russell
Schema still encompasses the paradoxes of Group A. But by choosing ¥ appro-
priately, it also encompasses Konig’s Paradox. We just take the property yxx) to
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be “x is definable”. DOn is clearly definable, and as we have already observed,
for definable x, Transcendence and Closure hold.

Unsurprisingly, all the other paradoxes in Group Bi fit the Qualified Russell
Schema. Take Berry’s Paradox. ¢(x) is “x is a natural number (= finite ordinal)
definable in less than 19 words”, so w={n; n is a natural number definable in
less than 19 words}, DN,o; y(x) is “x is definable in less than 14 words”; and
8(x) is just lon(x). Clearly, lon(x)¢x, and if x is definable in less than 14 words
lon(x)eDNj,. (Its definition is “the least ordinal not in” plus the definition of x.)
Hence Transcendence and Closure are satisfied. The contradiction is that
lon(DN,4)eDN, and lon(DN 0)&DNjs.

One further example: Richard’s Paradox. In this, ¢(x) is “x is-a definable real
number between 0 and 17, so that w is the set of such reals, DR; y(x) is “x is defin-
able” and &(x) is diag(x), a real, defined by diagonalisation on x, in such a way as
to ensure that 8(x)ex. If x is definable, diag(x) is definable. Hence both Transcend-
ence and Closure are satisfied. The contradiction is that diag(DR)eDR and
diag(DR)¢DR.

We can tabulate these observations as follows:

Paradox &(x) Y(x) @(x) | w

Konig’s lon(x) x is definable xisadefinable | DOn
ordinal
Berry’s lon(x) x is definable x is a natural DN,y
in less than 14 | number defin-
words able in less

than 19 words

Richard’s diag(x) x is definable xisadefinable | DR
real between
Oand 1

We have seen that all the paradoxes of Groups A and Bi fit the Qualified Russell
Schema. In fact, they all fit the Russell Schema itself. To see this it suffices to note
that (assuming the Axiom of Choice) for any structure that fits the Qualified
Schema there is another, identical in all relevant respects, that fits the regular
Schema.

Let @, 1 and d be any quantities satisfying the Qualified Russell Schema. As
usual, w={x: p(x)}. Let ® be a choice function on P(w). We now define a new
function, &', as follows. Let xCw.

&' (x) = 6(x) ify(x);

0 (x) = © (w-x) otherwise
It is easily seen that @ and &’ satisfy the Russell Schema. The only point to note
is that © (w-x) is undefined if w=x. But since y(w), §' (x) is simply &(x) in this case.
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For the same reason, the contradictions S(w)ewad(w)ew and & (W)ewad' (w)gw
are identical.

4. The Liar, etc.

We have seen that Russell’s Schema proper underlies the paradoxes in Ramsey’s
Groups A and Bi. It remains to show that it underlies the paradoxes in Group Bii.
The Liar Paradox is a paradigm of this Group. Prima facie this paradox appears
to have nothing to do with the Russell Schema: the Schema concerns totalities
which can be transcended by means of the application of a suitable operator; the
Liar Paradox does not seem to involve totalities at all.

However, with a bit of care, it can be put into the appropriate form. In fact, for
reasons that will become clear later, it is safer to show that it fits the Qualified
Russell Schema, so let me show this. Assume for the moment that it is sentences
(rather than propositions or some other semantic entities) that are true or false.
Let g(x) be “x is true”, so that w is the set of true sentences, Tr; let Y(x) be “x is
definable”. 8 is a function, o, defined by some suitable technique of diagonalisa-
tion so that if a is any definable set o(a)=c where a=<oga>. The angle-bracket
expression is a sentence expressing the fact that o. is not in the set a. (Hence, a
says “This sentence is not in @”.) Note that a must be definable, or there would
be no guarantee that there is such a sentence.

Now, if a is definable and aCTr:

ola)ea = <oga>ca
= <oaga><Tr
= a¢a (by the T-schema)

= o(a)¢a
Hence o(a)¢a, and Transcendence is satisfied. Moreover, it follows that a¢a, and
hence by the T-schema <aga>€Tr, i.e. o(@)eTr. Hence, Closure is satisfied too.
The Liar is the sentence o(Tr) and the contradiction is that o(Tr)eTr and
o(Tr)eTr. ’ '

Another paradox in this family is the Knower Paradox. This is the same as the
Liar, except that ¢(x) is “x is known to be true”, and so w is the set of known
things, Kn. Transcendence is verified as before, since knowledge implies truth;
Closure follows, since it has been established that aa, and so aeKn. The para-
dox is that o(Kn)eKn and o(Kn)¢Kn. '

- A variant on these paradoxes is the liar (or knower) chain, where several sen-
tences are inter-related. These fit the pattern, too. To see this, just consider the
simplest paradox of this kind: the Liar pair. This is exactly the same as the Liar,
except that ois slightly more complicated. This time, o(a)=0, where a=<peTr>
and B=<aga>. To see that o satisfies the appropriate conditions, suppose that
aCTr and that a is definable. Then:
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o(a)ea = aea
= aelr
=> <BeTr>eTr
= BeTr (by the T-schema)
= <ag¢a><TIr
= a¢a (by the T-schema)
= o(a)¢a
Hence, o(a)¢a, which is Transcendence. To see that Closure is satisfied, note the
following:
- o(a)¢a = a¢a
= <a¢a>cTr  (by the T-schema)
= Belr
= <BeTr>Tr (by the T-schema)
= qelr
=> g(a)eTr
The contradiction is that o(Tr)eTr and o(Tr)¢Tr.

A final example from this Group of paradoxes will suffice. This is the Hetero-
logical Paradox. @(x) is “-x sat x” where x is the satisfaction predicate, so
w={y: -y sat y}, Het; y(x) is “x is definable”, as before; if a is a definable set,
8(a)=<vea>, where v is any new variable, and so this is an open sentence. Now,
suppose that aCHet and a is definable. Then:

<vea>ea  => <vea>cHet
= ~<vea> sat <vea >
= <vea>¢a (by the Satisfaction Schema)
Hence <vea>¢a, i.e., Transcendence. So by the Satisfaction Schema ~<vea> sat
<vea>, i.e., <vea>cHet, Closure. The paradox is that <veHet>cHet and

<veHet>¢Het.
We can record these observations in the following table:

Paradox &(x) P(x) o(x) w

Liar o, where x is definable X is true Tr
o=<a&x>

Knower o, where x is definable x is known Kn
a=<o&x> ‘

Liar Chain o, where x is definable X is true Tr
a=<f=cTr>
where
<P>=<ogx>

Heterological | <vex> x is definable —-x sat x Het
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Finally, note that nothing is changed essentially if we take propositions or some
other semantic entities (not sentences) to be truth bearers; we just take <aex> to
be the appropriate proposition. Similarly, in the Heterological Paradox, we take
<vex> to be the appropriate property. In fact, things are actually simplified by
this. For presumably, for any set (not just a definable one), x, there is a proposi-
tion, ¢, such that o=<ogtx> (the proposition that this proposition is not in x). Sim-
ilarly, in the Heterological paradox, if x is any set there is a property of being in
x. In this case, one no longer needs to assume that x is definable; and the para-
doxes fit the regular Russell Schema directly.

5. The Principle of Uniform Solution

We have now seen that all the paradoxes of self-reference, whether from Group
A, Bi or Bii, fit the Russell Schema. The structure that this describes is, therefore,
the structure that generates all the paradoxes. Russell was right: there is a single
family here. What one should make of this demands a larger discussion than is
possible here; but I will at least indicate what seems to me to be the single most
important conclusion.

If two paradoxes are of different kinds, it is reasonable to expect them to have
different kinds of solutions; on the other hand, if two paradoxes are of the same
kind, then it is reasonable to expect them to have the same kind of solution. Gen-
eralising, it is natural to expect all the paradoxes of a single family to have a sin-
gle kind of solution. Any solution that can handle only some members of the
family is bound to appear somewhat one-eyed, and as not having got to grips with
the fundamental issue. Of course, this observation puts a lot of weight on the
notion of kind; to convince.ourselves that two paradoxes are of the same kind we
must convince ourselves (a) that there is a certain structure that produces contra-
diction and (b) that this structure is common to the paradoxes. Still, once kindred-
ship has been established in this way the point seems undeniable. Let us call it the
Principle of Uniform Solution (PUS, sorry): same kind of paradox, same kind of
solution.

Post Ramsey, logicians have accepted that there are essentially two distinct
families of paradox and, with an intuitive appreciation of the PUS, have, gener-
ally speaking, been content with two different kinds of solution. Typically, solu-
tions to paradoxes of Group A are of the Zermelo Fraenkel kind and deny the
existence of the totality w (Clause 1 of the Russell Schema). There is much less
agreement about solutions to Group B paradoxes, but, typically, such solutions
have denied principles such as the T-schema, or cognate principles, involved in
establishing Transcendence and Closure. (Al this is documented in Chs. 1 and 2
of Priest 1987.)

Whether or not each kind of solution is satisfactory within its own group (nei-
ther is), neither kind of solution gets a grip on paradoxes from the other group.
Clearly, semantic principles such as the T-schema do not occur in the paradoxes
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of Group A. Totalities do occur in paradoxes of Group B. However, in most cases,
these are totalities of a size whose existence is guaranteed by Zermelo Fraenkel
set theory. Typically, they are countable sets (e.g., the set of definable ordinals in
Konig’s Paradox), but they can even be finite! (as in Berry’s). Hence, the PUS, in
conjunction with the main result of this paper, is sufficient to sink virtually all
orthodox solutions to the paradoxes.

It is worth noting that some logicians have found Ramsey’s categorisation
problematic on the ground that the schema JxVy(Rxy <>-Ruxx) underlies para-
doxes in both of Ramsey’s classes; again with an intuitive appreciation of the
PUS, they have proposed faulting this as a solution to the paradoxes. (See, €.g.,
Martin 1977.) However adequate such solutions are, it should be noted that, as a
general approach, this fails because there are many paradoxes, such as Berry’s,
that are simply not of this form. (See e.g. Priest 1983.)

6. Curry paradoxes

Let me conclude with a word on a kind of paradox that is related to some of the
paradoxes I have been discussing, and which also cuts across Ramsey’s division:
Curry paradoxes. Some of the paradoxes I have discussed proceed by establish-
ing a sentence of the form a<>-o. (All the paradoxes in Group Bii do this and
some of the paradoxes in Group A, notably Russell’s, but not the paradoxes in Bi
or the other paradoxes in Group A.) For each paradox of this kind, we can form
a new paradox by replacing —~a uniformly with a— B, where B is an arbitrary for-
mula, or, more simply, with a— 1, where L is some logical constant entailing
everything. Using the Absorption principle (a—>(a—P)r a—>p) we can then infer
a—>1, and hence , and hence L. (See Priest 1987, 6.2.)

Do such paradoxes fit the general scheme given here? Yes and no, depending
on what — is. If it is a material conditional then, in most logics, a—L is logically
equivalent to —a, and so the curried version of each paradox is essentially the
same as the uncurried form. If, on the other hand, = is a non-material conditional
(e.g., a strict conditional), then a—1 and - o are quite different notions, at least
prima facie. (Evaluating the truth of the first at a world first requires a consider-
ation of what is happening at other worlds; evaluating the truth of the second does
not.) In this case, the curried versions of the paradoxes belong to a quite different
family. One may therefore expect them to be solved in a different way, most obvi-
ously by the rejection of Absorption.'
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